Adaptive <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e342" altimg="si3.svg"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math> interior penalty methods for Hamilton–Jacobi–Bellman equations with Cordes coefficients

نویسندگان

چکیده

In this paper we conduct a priori and posteriori error analysis of the C0 interior penalty method for Hamilton–Jacobi–Bellman equations, with coefficients that satisfy Cordes condition. These estimates show quasi-optimality method, provide one an adaptive finite element method. accordance proven regularity theory, only assume solution equation belongs to H2.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilized interior penalty methods for the time-harmonic Maxwell equations

We propose stabilized interior penalty discontinuous Galerkin methods for the indefinite time–harmonic Maxwell system. The methods are based on a mixed formulation of the boundary value problem chosen to provide control on the divergence of the electric field. We prove optimal error estimates for the methods in the special case of smooth coefficients and perfectly conducting boundary using a du...

متن کامل

Estimation of penalty parameters for symmetric interior penalty Galerkin methods

This paper presents computable lower bounds of the penalty parameters for stable and convergent symmetric interior penalty Galerkin methods. In particular, we derive the explicit dependence of the coercivity constants with respect to the polynomial degree and the angles of the mesh elements. Numerical examples in all dimensions and for different polynomial degrees are presented. We show the num...

متن کامل

Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient

This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bilinear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mes...

متن کامل

Interior Penalty Discontinuous Galerkin Methods with Implicit Time-integration Techniques for Nonlinear Parabolic Equations

We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin (IPDG) methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l(H) and l(L) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin (SIPG) scheme with the implicit θ-schemes in time...

متن کامل

Adaptive Methods for Semi-linear Elliptic Equations with Critical Exponents and Interior Singularities Adaptive Methods for Semi-linear Elliptic Equations with Critical Exponents and Interior Singularities

We consider the eeectiveness of adaptive nite-element methods for nding the nite element solutions of the parametrised semi-linear elliptic equation u+u+u 5 = 0; u > 0, where u 2 C 2 ((); for a domain IR 3 and u = 0 on the boundary of : This equation is important in analysis and it is known that there is a value 0 > 0 such that no solutions exist for < 0 and a singularity forms as ! 0. Furtherm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2021

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2020.113241